Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The relative frequency of sexual versus asexual reproduction governs the distribution of genetic diversity within and among populations. Most studies on the consequences of reproductive variation focus on the mating system (i.e., selfing vs. outcrossing) of diploid‐dominant taxa (e.g., angiosperms), often ignoring asexual reproduction. Although reproductive systems are hypothesized to be correlated with life‐cycle types, variation in the relative rates of sexual and asexual reproduction remains poorly characterized across eukaryotes. This is particularly true among the three major lineages of macroalgae (green, brown, and red). The Rhodophyta are particularly interesting, as many taxa have complex haploid–diploid life cycles that influence genetic structure. Though most marine reds have separate sexes, we show that freshwater red macroalgae exhibit patterns of switching between monoicy and dioicy in sister taxa that rival those recently shown in brown macroalgae and in angiosperms. We advocate for the investigation of reproductive system evolution using freshwater reds, as this will expand the life‐cycle types for which these data exist, enabling comparative analyses broadly across eukaryotes. Unlike their marine cousins, species in the Batrachospermales have macroscopic gametophytes attached to filamentous, often microscopic sporophytes. While asexual reproduction through monospores may occur in all freshwater reds, the Compsopogonales are thought to be exclusively asexual. Understanding the evolutionary consequences of selfing and asexual reproduction will aid in our understanding of the evolutionary ecology of all algae and of eukaryotic evolution generally.more » « less
-
Abstract Temporal population genetic studies have investigated evolutionary processes, but few have characterized reproductive system variation. Yet, temporal sampling may improve our understanding of reproductive system evolution through the assessment of the relative rates of selfing, outcrossing, and clonality. In this study, we focused on the monoicous, haploid‐diploid freshwater red algaBatrachospermum gelatinosum. This species has a perennial, microscopic diploid phase (chantransia) that produces an ephemeral, macroscopic haploid phase (gametophyte). Recent work focusing on single‐time point genotyping suggested high rates of intragametophytic selfing, although there was variation among sites. We expand on this work by genotyping 191 gametophytes sampled from four sites that had reproductive system variation based on single‐snapshot genotyping. For this study, we sampled at multiple time points within and among years. Results from intra‐annual data suggested shifts in gametophytic genotypes throughout the season. We hypothesize that this pattern is likely due to the seasonality of the life cycle and the timing of meiosis among the chantransia. Interannual patterns were characterized by consistent genotypic and genetic composition, indicating stability in the prevailing reproductive system through time. Yet, our study identified limits by which available theoretical predictions and analytical tools can resolve reproductive system variation using haploid data. There is a need to develop new analytical tools to understand the evolution of sex by expanding our ability to characterize the spatiotemporal variation in reproductive systems across diverse life cycles.more » « less
An official website of the United States government
